
Probabilistic Program Abstractions

Steven Holtzen and Todd Millstein and Guy Van den Broeck

Computer Science Department

University of California, Los Angeles

{sholtzen,todd,guyvdb}@cs.ucla.edu

Abstract

Abstraction is a fundamental tool for reasoning

about complex systems. Program abstraction

has been utilized to great effect for analyzing

deterministic programs. At the heart of pro-

gram abstraction is the relationship between

a concrete program, which is difficult to ana-

lyze, and an abstract program, which is more

tractable. Program abstractions, however,

are typically not probabilistic. We general-

ize non-deterministic program abstractions to

probabilistic program abstractions by explic-

itly quantifying the non-deterministic choices.

Our framework upgrades key definitions and

properties of abstractions to the probabilistic

context. We also discuss preliminary ideas for

performing inference on probabilistic abstrac-

tions and general probabilistic programs.

1 INTRODUCTION & MOTIVATION

Program abstractions are a richly studied method from

the programming languages community for reasoning

about intractably complex programs (Cousot and Cousot,

1977). An abstraction is typically an over-approximation

to a program: any execution that is possible in the origi-

nal program is contained within the abstraction. Over-

approximation allows abstractions to be used to prove

program invariants: any property of all executions in

the abstraction is also true of all executions in the orig-

inal program. To achieve this goal while being more

tractable than the concrete program, abstractions work on

a simplified domain. The abstraction selectively models

particular aspects of the original program while utilizing

non-determinism to conservatively model the rest.

Non-deterministic abstractions are useful for verifying

properties such as reachability in a concrete program.

However, abstractions are decidedly not probabilistic:

they are concerned with the possible, not the probable.

Therefore, they fail to support more nuanced queries

such as probabilistic reachability, or probabilistic pro-

gram inference. We seek to enhance the program ab-

straction framework by explicitly quantifying the non-

deterministic choices made in the abstraction, turning

the program abstraction into a probabilistic model. That

is, our probabilistic abstractions are themselves proba-

bilistic programs, which have been the subject of intense

study recently (e.g., Goodman et al. (2008); Fierens et al.

(2013); Wood et al. (2014); Carpenter et al. (2016)).

The key contribution of this paper is the development of

a foundational theory for probabilistic program abstrac-

tions. We define probabilistic abstractions as a natural

generalization of traditional abstractions, using random

variables as the abstraction mechanism instead of non-

determinism. We also formalize the relationship between

a probabilistic abstraction and a concrete program, again

generalizing from the non-deterministic setting. This in-

cludes semantics in both the concrete and abstract do-

main, the connection between these semantics, and the

notion of a sound probabilistic over-approximation.

A well-known construction of non-deterministic pro-

gram abstractions is that of a predicate abstraction (Graf

and Saïdi, 1997; Ball et al., 2001). It induces an abstrac-

tion relative to a given set of Boolean predicates about

the program state. We define probabilistic predicate ab-

stractions, which are represented by a simple Bernoulli

probabilistic program, as an instance of our framework,

and a generalization of classical predicate abstraction.

We conclude with a discussion of ideas for performing

inference in probabilistic predicate abstractions, build-

ing on model checking techniques from the program-

ming languages community and weighted model count-

ing from the artificial intelligence community. We then

discuss how probabilistic abstractions could be used to

simplify inference in probabilistic concrete programs.

-2 -1 0 1 2

C

α(−1)

γ(T)

T F

A

Figure 1: Visualization of a simple predicate domain.

The five concrete states over an integer variable x in the

range [−2, 2] are abstracted to two states based on the

valuation of the predicate (x < 0). We see, for example,

that α(−1) = T , and γ(T) = {−2,−1}).

2 NON-DETERMINISTIC PROGRAM

ABSTRACTION

In this section we provide the semantics and proper-

ties of an over-approximate non-deterministic abstrac-

tion and provide an example of a particular class of over-

approximations known as predicate abstractions.

2.1 SEMANTICS AND PROPERTIES

A concrete program is a syntactic object written C. The

semantics of a concrete program, which for simplicity we

also denote C, is a function from input states to output

states over some concrete domain DC . Concrete states

are total assignments to all variables in the concrete do-

main, which we denote z ∈ DC .

In general, the problem of proving that a given pro-

gram satisfies a desired invariant is undecidable. Ad-

vances in theorem proving techniques such as Satisfia-

bility Modulo Theory (SMT) solvers (e.g., De Moura and

Bjørner (2008)) render reasoning in many useful theories

tractable, yet there exist common program structures that

lie outside of supported theories.

The framework of abstract interpretation (Cousot and

Cousot, 1977) provides a general technique for relating

a concrete program C to another program A which we

refer to as an abstraction. We describe a specialization

of the abstract interpretation framework.

Definition 2.1. Abstract semantics of an abstraction.

The abstract semantics of an abstraction A, which for

simplicity we also denote A, is a function from input

states to sets of output states over an abstract domain DA,

written A : DA → 2DA .

Intuitively, the nondeterminism in the abstract semantics

of an abstraction represents uncertainty due to the loss

of information in abstracting C to A. We represent this

non-determinism as a set of possible abstract states, de-

noted a ∈ DA. To relate concrete programs with abstrac-

tions we introduce two mappings between concrete and

abstract states.

Definition 2.2. Abstraction and concretization func-

tions. An abstraction function for DC and DA is a func-

tion α : DC → DA that maps each concrete state to its

abstract representative. A concretization function for DC

and DA is a function γ : DA → 2DC that maps each

abstract state to a set of concrete states. When applied

to sets, γ and α respectively concretize or abstract each

element of the set.

Abstraction and concretization functions are related.

Definition 2.3. Compatibility. An abstraction func-

tion α and concretization function γ are compatible if

z ∈ γ(α(z)) for all z ∈ DC . As an extension, the two

functions are strongly compatible if they are compatible

and for any a and z ∈ γ(a), we have that z /∈ γ(a′) for

any a′ 6= a.

A predicate domain is a well-studied abstract domain

induced by a given sequence of predicates (p1, . . . , pn)
about the concrete state. The abstract domain DA con-

sists of n Boolean variables (b1, . . . , bn) and so has 2n

possible elements, one for each valuation to the n vari-

ables. For instance, suppose DC consists of a single

integer variable x whose value is in the range [−2, 2].
The single predicate (x < 0) induces an abstract do-

main with two possible states, representing the concrete

states where (x < 0) is true and false. See Figure 1 for

a visualization. The abstraction function α maps each

concrete state z to the abstract state (p1(z), . . . , pn(z)),
and the concretization function γ maps each abstract

state a to the set of concrete states consistent with it:

{z ∈ DC | (p1(z), . . . , pn(z)) = a}. The functions α
and γ are strongly compatible for predicate domains.

Intuitively, an abstraction represents a set of possible

concrete programs, which is formalized as follows:

Definition 2.4. Concrete semantics of an abstraction.

The concrete semantics of an abstraction A, given com-

patible abstraction and concretization functions α and γ,

is a function [[A]] : DC → 2DC defined as follows:

[[A]](z) = γ
(
A(α(z))

)
,

where γ is applied to each element of A(α(z)).

Ultimately we wish to prove properties about a particu-

lar concrete program C by reasoning about some simpler

abstract program A. From the above definition of an ab-

straction’s concrete semantics we immediately obtain the

following criterion for relating a specific concrete pro-

gram C to A:

Definition 2.5. Sound over-approximation. Let A be

some abstract program with compatible abstraction and

1 if(x<0) {

2 x = 0

3 } else {

4 x = x + 1

5 }

Figure 2: A simple

concrete program

over an integer

variable x.

concretization functions α and γ. The tuple (A, α, γ)

is a sound over-approximation of C if for all z ∈ DC ,

C(z) ∈ [[A]](z).

In other words, A is sound for C if the result of any con-

crete execution of C is contained within the possible con-

cretizations of the result of A executed on the abstracted

input. Sound over-approximations can be used to verify

safety properties of programs, which intuitively express

the fact that certain “bad” things never happen (e.g., no

null dereferences will occur). Every safety property can

be formalized as a requirement that some set B of “bad”

states in the concrete program never be reached. To prove

that C(z) 6∈ B for each concrete state z, it suffices to

prove that γ([[A]](a)) ∩ B = ∅ for each abstract state

a ∈ DA, where A is a sound over-approximation of C.

In general, the construction of an abstraction is a careful

balance between precision, the fidelity of the abstraction

to the original concrete program, and tractability, how

difficult the abstraction is to construct and reason about.

For abstract predicate domains, adding more predicates

to the domain increases precision but also makes the ab-

straction more costly to produce and analyze.

The semantics above treats programs C and A as black-

box input-output functions. Nevertheless, the semantics

straightforwardly generalizes to assign meaning to every

single line of code in the programs, allowing us to estab-

lish a sound over-approximation throughout.

2.2 PREDICATE ABSTRACTION

A predicate abstraction is a well-studied program ab-

straction whose abstract domain is a predicate do-

main (Graf and Saïdi, 1997; Ball et al., 2001) (see the

previous section for the definition of a predicate do-

main). Predicate abstractions are known as Boolean pro-

grams: the domain DA = {T, F}n. Safety checking

in Boolean programs is decidable: a Boolean program

has a finite set of states over a fixed number of Boolean

variables, making it decidable to obtain the set of reach-

able states. Given a concrete program C and a set of n
predicates (p1, . . . , pn) over the concrete domain DC , the

goal of the predicate abstraction process is to construct

an abstract Boolean program A that forms a sound over-

approximation of C and is as precise as possible relative

to the given predicates.

We use the simple program in Figure 2 as an exam-

1 if(*) {

2 assume({x<3})

3 {x<-4}, {x<3} = F, T
4 } else {

5 assume(!{x<-4})

6 {x<-4}, {x<3} =

7 choose(F, !{x<3} ∨ !{x<-4}),

8 choose({x<-4}, !{x<3})

9 }

Figure 3: A predicate abstraction of the program in Fig-

ure 2 induced by the predicates x<-4 and x<3. Note that

predicate updates that are abstractions of the same con-

crete assignment statement are updated simultaneously.

ple to illustrate the predicate abstraction process. The

Boolean program induced by the predicates x<-4 and

x<3 is shown in Figure 3. Following the notation of Ball

et al. (2001), the * operator represents nondeterministic

choice, and the Boolean variable associated with predi-

cate p is denoted {p}. We describe the predicate abstrac-

tion process for branches and assignments in turn.

2.2.1 Abstracting Branches

Consider a conditional statement of the form

if (p) {· · ·} else {· · ·}

in the concrete program. Let pT denote the strongest

propositional formula over the predicates p1, . . . , pn that

is implied by p and pF denote the strongest propositional

formula over the predicates p1, . . . , pn that is implied by

!p. These formulas represent the most precise informa-

tion we can know inside the then and else branches re-

spectively, given the predicates in the abstraction. They

can be obtained through queries to an SMT solver, as-

suming that p and the n predicates are all in decidable

logical theories; see Ball et al. (2001) for details. The

predicate abstraction process translates the above condi-

tional as follows in the Boolean program:

if (*) {

assume({pT}) ...

} else {

assume({pF}) ...

}

Here {pT} is pT but with each predicate pi replaced by

its Boolean counterpart {pi}, and similarly for {pF}.

The statement assume(ϕ), which is standard in the pro-

gramming languages community, silently ignores execu-

tions which do not satisfy ϕ. Note that {pT} and {pF}

can simultaneously be true, which allows the execution

to nondeterministically take either branch of the condi-

tional.

In the program of Figure 2, we know that x<0 is true

in the then clause. In Figure 3, the strongest information

our abstraction can know at that point is that (the Boolean

variable corresponding to) x<3 is true. Similarly, x<0 is

false in the else branch in Figure 2, while the abstraction

in Figure 3 only knows that x<-4 is false.

2.2.2 Abstracting Assignment Statements

Consider an assignment statement of the form x = e

in the concrete program. In the corresponding point of

the abstract program we must simultaneously update the

values of all Boolean variables to reflect the update to the

value of x. Suppose we want to update the variable {pi}.

Let pTi denote the weakest propositional formula over the

predicates p1, . . . , pn such that pTi holding before the as-

signment x = e suffices to ensure that pi will be true

after the assignment. Similarly let pFi denote the weak-

est propositional formula over the predicates p1, . . . , pn
such that pFi holding before the assignment x = e suf-

fices to ensure that pi will be false after the assignment.

Again an SMT solver can be used to obtain these formu-

las, leveraging the standard notion of the weakest pre-

condition of an assignment statement with respect to a

predicate (Dijkstra, 1976). The predicate abstraction pro-

cess updates the Boolean variable {pi} as follows in the

Boolean program:

{pi} = choose({pTi }, {pFi })

Here choose(ϕ1, ϕ2) returns T if ϕ1 is satisfied, other-

wise returns F if ϕ2 is satisfied, and otherwise chooses

nondeterministically between T and F .

Consider the assignment statement x = 0 in Figure 2.

The abstraction process described above will assign

{x<3} in the Boolean program to choose(T, F),

which simplifies to just T as shown in Figure 3. More

interestingly, consider the assignment statement x = x

+ 1 in Figure 2. If x<-4 is true before the assign-

ment, then we can be sure that x<3 is true afterward.

If x<3 is false before the assignment, then we can be

sure that x<3 is false afterward. If neither of these is the

case, then the abstraction does not have enough infor-

mation to know the value of x<3 after the assignment.

Hence in the Boolean program {x<3} is assigned to

choose({x<-4}, !{x<3}).

Invariants Multiple predicates that involve the same

variable are typically constrained in some way. For

example, the predicates {{x<3}, {x<-4}} are con-

strained due to the relationship {x<-4}⇒{x<3}. This

constraint is an invariant which increases the precision

of the abstraction with minimal decrease in tractability.

We call this constraint I, and we can enforce it simply

by inserting an assume(I) statement after each set of

assignments.

2.2.3 Proving Program Invariants

A predicate abstraction is a sound over-approximation

of the original concrete program. Further, because a

Boolean program has a finite set of possible states at each

point in the program, it can be exhaustively explored via

a form of model checking, which conceptually executes

the program in all possible ways (Ball and Rajamani,

2000). Model checking produces the set of reachable

states at each point in the program, and this information

can be used to verify invariants of the original program.

Consider the Boolean program in Figure 3. All execu-

tions of this program end in a state where the Boolean

variable {x<-4} has the value F . This implies that x

always ends in a value greater than or equal to -4 in the

original program in Figure 2. On the other hand, our

predicate abstraction is not precise enough to verify that

x always ends in a nonnegative value, though that is true

of the original program. A different choice of predicates

would enable such reasoning in the abstraction.

Selecting predicates The selection of predicates is

clearly a critical component of an effective predicate ab-

straction. In this work we focus on the definition and

construction of probabilistic predicate abstractions given

a fixed set of predicates, leaving automated selection

of predicates for future work. The programming lan-

guages community has developed several approaches to

the problem of predicate selection. A common approach

is to use a form of counterexample-driven refinement,

which iteratively adds predicates until the abstraction is

precise enough to prove or disprove the desired property

of the concrete program (e.g., Ball and Rajamani (2002)).

Extending these techniques to the probabilistic context is

a challenging and exciting research problem.

3 PROBABILISTIC PROGRAM

ABSTRACTION

The primary contribution of this paper is the exten-

sion of the non-deterministic program abstractions of the

previous section to the probabilistic context. We be-

gin by defining a simple probabilistic programming lan-

guage. Syntactically, our probabilistic predicate abstrac-

tions will simply be probabilistic programs in this lan-

guage. Next, we generalize the abstraction semantics

of Section 2.1 to the probabilistic context, and define

soundness criteria for probabilistic program abstractions.

Finally, we generalize the predicate abstraction process

from Section 2.2 to the probabilistic context by placing

distributions on the non-deterministic choices.

3.1 PROBABILISTIC PROGRAMMING

We define a simple probabilistic programming lan-

guage, BERN, which contains only (1) Boolean vari-

ables; (2) Boolean operators; (3) Boolean assignments;

(4) if statements; (5) a flip(θ) operator, which is a

Bernoulli random variable with parameter θ; and (6) an

observe(ϕ) statement, which ignores executions that

do not satisfy some condition ϕ. Note that observe

statements can also be captured by a conditional proba-

bility query on the distribution.

An extension to BERN is to introduce a goto construct,

which would allow it to reason about underlying concrete

programs with arbitrary control flow. The predicate ab-

straction framework makes reasoning about loopy con-

crete programs tractable (Ball et al., 2001); however, we

defer generalizing the semantics of loopy probabilistic

predicate abstractions to future work. As an example of

a BERN program, one can construct a program that en-

codes a Bayesian network a© → b©:

a = flip(θ1)
if(a) { b = flip(θ2)}
else { b = flip(θ3)}
observe(b)

This probabilistic program defines the conditional proba-

bility of each event by utilizing the control-flow features

of BERN. For example, Pr(b | ¬a) = θ3. The observe

statement conditions the Bayesian network on some evi-

dence: thus, queries about a in this program correspond

to Pr(a | b).

Probabilistic programming has proven a natural tool for

the construction of generative statistical models. As

such, infrastructure for computing queries on probabilis-

tic programs has begun to develop in the AI and program-

ming languages communities (Carpenter et al., 2016;

Goodman et al., 2008; Wood et al., 2014; Fierens et al.,

2013).

3.2 PROBABILISTIC SEMANTICS

Section 2.1 identifies both the abstract and concrete se-

mantics of a program abstraction. We generalize these

non-deterministic semantics to probabilistic semantics

by producing families of compatible probability distri-

butions described by constraints on their support.

Since syntactically abstractions will be probabilistic pro-

grams, the abstract semantics of a probabilistic abstrac-

tion are simply the semantics of that program, broadly

defined.

Definition 3.1. Abstract semantics. Let ai, ao ∈ DA.

The abstract semantics of a probabilistic abstraction A,

denoted PrA(ao | ai), is a conditional probability dis-

tribution over abstract domain DA, which describes the

probability of transitioning from an initial set of states ai
to an output state ao under the abstraction A.

To define the concrete semantics of a probabilistic ab-

straction, we first need to generalize the concretization

function γ to the probabilistic context.

Definition 3.2. Concretization distribution. Let z ∈
DC and a ∈ DA. A concretization distribution is a con-

ditional probability distribution Prγ(z | a) that describes

the probability of concretizing an abstract state a to some

concrete state z.

In the non-deterministic setting, we were concerned only

with membership in the set γ. Here, we generalized γ to

the probabilistic context by placing a distribution over

possible concretizations.1 Concretization distributions

and abstraction functions are related as follows:

Definition 3.3. Compatibility. An abstraction func-

tion α and concretization distribution Prγ are compatible

when, for all z ∈ DC , Prγ(z | α(z)) > 0. Furthermore,

these functions are strongly compatible if they are com-

patible and for any a and z such that Prγ(z | a) > 0, we

have that Prγ(z | a′) = 0 for all a′ 6= a.

We are now in a position to define the concrete semantics

of a probabilistic abstraction.

Definition 3.4. Concrete semantics. Let zi, zo ∈ DC be

some input and output concrete states. The concrete se-

mantics of an abstraction A given a compatible abstrac-

tion function α and concretization distribution Prγ is a

conditional probability distribution describing the prob-

ability of transitioning from zi to zo:

Pr[[A]](zo | zi) =
∑

ao∈DA

Prγ(zo | ao) PrA(ao | α(zi)).

In the case when α and Prγ are strongly compatible, we

can refine the above definition:

Proposition 3.1. Let zo, zi ∈ DC . For strongly com-

patible α and Prγ , there exists a single ao for which

Prγ(zo | ao) > 0. Thus the sum may be collapsed:

Pr[[A]](zo | zi) = Prγ(zo | ao) PrA(ao | α(zi)).

As an example, we saw previously that predicate do-

mains allow for strongly compatible concretization and

abstraction functions. We see in Figure 4 a probabilistic

extension to non-deterministic predicate abstraction.

Under the probabilistic semantics, we can define a prob-

abilistic analog of the over-approximation property of A
as a constraint on the support of Pr[[A]].

1For continuous concrete domains, concretization distribu-
tions directly generalize to concretization densities.

-2 -1 0 1 2

Pr1γ

Pr2γ

Pr[[A]]

C

T F

PrA

A

Figure 4: Probabilistic predicate abstraction over domain

DA ={{x<0}}. Distribution Pr[[A]] over DC is gener-

ated by (1) a distribution over abstract states PrA and (2)

one of two concretization distributions: Pr1γ or Pr2γ .

Definition 3.5. Sound probabilistic over-

approximation. Let A be a probabilistic program

abstraction with compatible abstraction function α and

concretization distribution Prγ . Then the tuple (A, α,

Prγ) is a sound probabilistic over-approximation of con-

crete program C if for all z ∈ DC , Pr[[A]](C(z) | z) > 0.

3.2.1 Non-Deterministic Semantics

A sound probabilistic over-approximation is a general-

ization of a sound non-deterministic over-approximation

in the sense that it provides a distribution over feasible

states. Thus a sound probabilistic over-approximation

has a corresponding sound non-deterministic over-

approximation, which we make precise in the following

definitions:

Definition 3.6. Non-deterministic semantics. Let A
be a probabilistic program abstraction with compati-

ble concretization distribution Prγ and abstraction func-

tion α. Then there is a corresonding non-deterministic

concretization function γ(a)↓ = {z | Prγ(z | a) > 0)}
and abstract non-deterministic program A(a)↓ = {a′ |
PrA(a

′ | a) > 0)}.

We observe that γ(a)↓ is compatible with α if Prγ is

compatible with α. Further, soundness of a probabilistic

abstraction implies soundness of its corresponding non-

deterministic abstraction, and vice versa:

Theorem 3.1. Non-deterministic sound over-

approximation. For any probabilistic program ab-

straction A with compatible concretization distribution

Prγ and abstraction function α, the tuple (A, α,Prγ)
is a sound probabilistic over-approximation to concrete

program C if and only if the tuple (A(·)↓, α, γ(·)↓) is a

sound non-deterministic over-approximation to C.

3.2.2 Concretization Invariance

The concrete semantics Pr[[A]] are necessary for reason-

ing about the concrete domain. However, directly an-

alyzing Pr[[A]] is made difficult by the necessity of se-

lecting some compatible concretization distribution Prγ .

Significantly, in the case when a concrete query can be

precisely represented using a set of abstract states, A
alone provides sufficient structure to compute a proba-

bility in Pr[[A]] independent of the choice of Prγ :

Theorem 3.2. Concretization distribution invariance.

Let A be a probabilistic program abstraction with

strongly compatible concretization distribution Prγ and

abstraction function α. For any zi ∈ DC and ao ∈ DA,

Pr[[A]](ao|zi)
def
=

∑

zo∈γ(ao)↓

Pr[[A]](zo|zi) = PrA(ao|α(zi)).

In other words, the probability of an abstracted event

occurring in the concrete semantics is equivalent to the

probability of that event in the abstract semantics, regard-

less of the concretization distribution.

We see a visualization of this theorem in Figure 4. Re-

gardless of whether Pr1γ or Pr2γ are chosen,

Pr[[A]]

(
γ(α(x = −1))↓

))
= Pr[[A]]({−1,−2})

= PrA({x < 0}).

As a consequence, queries performed on the abstraction

A represent queries performed on the set of all possible

strongly-compatible concretization distributions. Thus,

even though in the probabilistic setting we must reason

about a distribution over concrete states, we can still lift

our analyses to the abstract domain, similar to the bene-

fits of non-deterministic abstraction in Section 2.2.3.

3.3 PROBABILISTIC PREDICATE

ABSTRACTIONS

Thus far we have seen a semantics for a probabilistic

program abstraction, but we do not yet have a way to

generate one for a particular program. In this section,

we seek to generalize predicate abstraction to the proba-

bilistic domain, and show that in general a probabilistic

predicate abstraction is a family of Boolean probabilistic

programs with Bernoulli flip parameters.

3.3.1 Branch Statements

We saw in Section 2.2.1 that a predicate abstraction of an

if statement is of the form

if(*) {assume(α) . . . } else {assume(β) . . .}

where α and β represent the most precise information

we can know about the state of predicates at the then

and else branches of the program. The behavior of the

abstraction is non-deterministic in the case when both

α and β hold. A probabilistic predicate abstraction of

this statement should explicitly quantify the probability

of choosing a particular path when either path is possible

in the abstraction.

To do so, we first rewrite the predicate abstraction’s if

statement equivalently as follows:

if(¬β ∨ (α ∧ ∗)) { . . . } else { . . . }

As in the original formulation, this version ensures that

the then clause will not be taken if α is false and the

else clause will not be taken if β is false.2 The non-

deterministic choice * then determines which path to

take when both predicates are true.

A probabilistic predicate abstraction must represent a

distribution over paths when α and β both hold. Under

the semantics of BERN, we may do so simply by replac-

ing the non-deterministic choice with a flip:

if(¬β ∨ (α∧flip(θ))) { ... } else { ... }

Thus a probabilistic version of the predicate abstrac-

tion in Figure 3 would have an if statement with guard

{x<-4}∨({x<3}∧flip(θ)), where θ represents the

conditional probability that the branch is taken given -4

≤ x < 3. As long as 0 < θ < 1, all concrete exe-

cutions are contained within the support of this proba-

bilistic program abstraction, implying that it is a sound

probabilistic over-approximation.

3.3.2 Assignment Statements

Section 2.2.2 showed that a concrete assignment is ab-

stracted to a set of predicate assignments of the form γ
= choose(α, β), where γ is a predicate and α and

β encode the most precise update we can make to γ. The

abstraction behaves non-deterministically: it may assign

γ to either true or false when neither α nor β holds.

Thus, the probabilistic generalization of an assignment

statement needs to represent the conditional probability

of γ given ¬α ∧ ¬β.

First, we re-write the choose statement, introducing a

non-deterministic * operator similar to the previous sec-

tion. We may write an equivalent update to γ:

γ = α ∨ (¬β ∧*)

As above, in BERN we then replace * with a Bernoulli

random variable:

γ = α ∨ (¬β ∧flip(θ))

2Note that by construction α and β cannot both be false.

For example, under this strategy the assignment state-

ment x=x+1 from Figure 3 would be abstracted to the

following BERN program statements, given predicates

{x<-3} and {x<4} :

{x<-4}, {x<3} =

({x<-4} ∧ {x<3} ∧ flip(θ1)),
({x<-4} ∨ ({x<3} ∧ flip(θ2)))

3.4 INVARIANTS

In the non-deterministic case, enforcing invariants

among predicates is a lightweight procedure of inserting

assume statements in order to increase the precision of

the abstraction. Analogously, in the probabilistic case,

we wish to represent distributions over predicates while

disallowing inconsistent predicate states. In this section

we explore the consequences of enforcing invariants on

the abstraction.

An initial approach to enforcing invariants is to straight-

forwardly generalize the non-deterministic procedure by

inserting observe(I) statements between each assign-

ment, where I is the invariant which must hold over

the predicates. For example, for the concrete program

x=x+10 with the predicates {x<-4} and {x<3}, we

generate the following abstraction:

{x<-4}, {x<3} =

({x<-4} ∧ {x<3} ∧ flip(θ1)),
({x<-4} ∧ {x<3} ∧ flip(θ2))

observe({x<-4}⇒{x<3})

A key downside is that the parameters no longer have

a local semantics: conditioning correlates the otherwise

independent flips. This complicates the probability com-

putation, which now involves a partition function.

Therefore we present an alternative abstraction construc-

tion procedure which preserves the local semantics of the

parameters of the abstraction while enforcing invariants

over predicates. Consider again the concrete program

x=x+10. We generate an abstraction using the same

predicates as before. However, instead of simply insert-

ing observe statements, we utilize control flow in or-

der to effectively condition on the previously assigned

value:

{x<3} = {x<3} ∧ {x<-4} ∧ flip(θ1)
if({x<3}) {

{x<-4} = {x<-4} ∧ flip(θ2)
} else {

{x<-4} = F
}

This abstraction, which we call structurally dependent,

updates each predicate sequentially, considering all pre-

vious decisions. Each concrete statement is abstracted

to several abstract statements which utilize control flow

to disallow invalid states. The state {x<-4}∧!{x<3}

is guaranteed to have 0 probability without the use of

observe statements. Further, the parameters have a lo-

cal interpretation as a conditional probability: it is not

necessary to compute a partition function to compute the

probability of a particular predicate configuration.

Fundamentally, these two methods of constructing the

abstraction represent different factorizations of the dis-

tribution. In the non-deterministic context with invariant

enforcement, these two abstractions are equivalent.

4 DISCUSSION

This paper focuses on the definition and key properties

of probabilistic program abstractions. In this section we

discuss natural next steps for the work. Traditional non-

deterministic program abstractions are typically used to

produce the set of reachable program states, in order to

verify invariants. The analogous operation on a proba-

bilistic program abstraction is inference. First we discuss

possible approaches to inference for probabilistic predi-

cate abstractions, by leveraging both model checking and

weighted model counting. Second, we discuss how the

ability to perform inference on a probabilistic abstraction

could be a key enabler for a new approach to performing

inference on more general probabilistic programs. The

main idea is to reduce inference on a probabilistic pro-

gram to the task of choosing particular flip probabili-

ties for a corresponding probabilistic abstraction.

4.1 INFERENCE FOR PROBABILISTIC

PREDICATE ABSTRACTIONS

We believe that existing techniques from the program-

ming languages literature which are designed for work-

ing with non-deterministic Boolean programs can be ex-

tended to perform inference on BERN programs. We can

then use weighted model counting to evaluate queries.

We note that abstractions allow one to query the marginal

probability of an event at any point in the program, not

merely upon program termination.

Probabilistic Model Checking The problem of com-

puting the set of reachable states in a Boolean program

is known as the model checking problem and has been

extensively studied by the programming languages com-

munity. Commonly one represents the set of reach-

able states at any point in the program as some Boolean

knowledge base ∆. In many existing tools, ∆ is repre-

sented using a binary decision diagram (Ball and Raja-

mani, 2000). Inference in BERN is thus an extension to

the traditional model checking paradigm in which we in-

troduce weighted variables for the state of each flip.

During model checking, we treat each flip as an un-

1 a = unif [0, 10)

2 if (a < 5) { b = unif [0, 10) }

3 else { b = unif [0, 20) }

4 if (b < 5) { c = unif [0, 10) }

5 else { c = unif [0, 20) }

(a) Probabilistic program for Bayesian network a© → b© → c©.

{a<5} = flip(1/2)

if({a<5}) { {b<5} = flip(1/2) }

else { {b<5} = flip(1/4) }

if({b<5}) { {c<5} = flip(1/2) }

else { {c<5} = flip(1/4) }

(b) Probabilistic abstraction with {a<5}, {b<5}, and {c<5}.

Figure 5: A concrete probabilistic program and a proba-

bilistic abstraction for computing Pr[[A]](c < 5).

constrained Boolean variable.

For example, consider the probabilistic predi-

cate abstraction statement {x<4} = {x<4} ∧
flip(θ). We assume ∆ = {x<4} prior to exe-

cution of statement. Following this statement, ∆′ =

({x<4}∧flip(θ)) ∨ (!{x<4} ∧ !flip(θ)).

See Ball and Rajamani (2000) for more details.

Weighted Model Counting Whereas model checking

is usually concerned with determining whether A can

reach a particular state, in probabilistic program infer-

ence we are concerned with the weighted sum of reach-

able states, where the weights are induced by the param-

eters of the flips in each model. The programming

languages community has two primary methodologies

for computing the set of reachable states in a Boolean

program: (1) knowledge compilation to binary decision

diagrams (Ball and Rajamani, 2000), and (2) satisfiabil-

ity methods (Donaldson et al., 2011). Both of these ap-

proaches can be generalized to perform weighted model

counting for inference in BERN.

The knowledge compilation approach to model check-

ing is already capable of performing weighted model

counting due to the nature of the queries efficiently sup-

ported by a binary decision diagram (Darwiche and Mar-

quis, 2001), and is used for inference in discrete prob-

abilistic programs (Fierens et al., 2013) and Bayesian

networks (Chavira and Darwiche, 2008). The satisfia-

bility approach to model checking can be extended to

perform weighted model counting. This problem is #P-

hard (Valiant, 1979), but a number of recent approxi-

mation methods have been explored (Chakraborty et al.,

2013; Belle et al., 2015b; Zhao et al., 2016); see Gomes

et al. (2009) for a survey of the subject.

4.2 INFERENCE FOR GENERAL

PROBABILISTIC PROGRAMS

Consider the probabilistic program in Figure 5a and sup-

pose we want to evaluate Pr[[C]](c < 5). We will sketch

an approach to doing so using probabilistic predicate ab-

stractions.

Figure 5b shows a probabilistic predicate abstraction for

our original probabilistic program, induced by the predi-

cates {a<5}, {b<5}, and {c<5}. Initially each flip

has its own parameter to represent its probability. In

the figure, we show particular values for each parame-

ter, which were computed by performing queries on frag-

ments of the original concrete program. For example, the

concrete assignment a = unif[0, 10) is abstracted

to {a<5} = flip(1/2) by computing Pr(a < 5) on

this single statement of the concrete program. The other

parameters can be learned similarly. The key point is

that each of these queries is much easier to evaluate in

the original program than the actual query of interest, as

they are over smaller fragments of the program.

Now we show that the abstraction captures enough detail

to answer our query precisely. Computing the weighted

model count using the approach described in the previous

subsection, we see that:

PrA({c<5}) =

{a<5},{b<5},{c<5}
︷ ︸︸ ︷

0.5 · 0.5 · 0.5 +

{a<5},!{b<5},{c<5}
︷ ︸︸ ︷

0.5 · 0.5 · 0.25

+ 0.5 · 0.25 · 0.5
︸ ︷︷ ︸

!{a<5},{b<5},{c<5}

+ 0.5 · 0.75 · 0.25
︸ ︷︷ ︸

!{a<5},!{b<5},{c<5}

=
11

32
.

The result is in fact the answer to the original query.

In this way, the inference problem on C is decomposed

into two, potentially much simpler, problems: (i) fixing

the parameters of an abstraction, and (ii) weighted model

counting on the abstraction. There remains considerable

theoretical work to formally connect the semantics of

the probabilistic abstraction with a probabilistic concrete

program, as well as practical work to realize the benefits

of the approach on desired applications.

5 RELATED WORK

Probabilistic reasoning and static analysis. Several

recent works leverage a probabilistic model to guide re-

finements of a program abstraction (Grigore and Yang,

2016; Zhang et al., 2017). However, the abstractions

themselves are not probabilistic. Gehr et al. (2016) use

static analysis of a probabilistic program to decompose

the problem of inference along paths, which are then dis-

patched to specialized integration tools depending on the

constraints of each path; this work analyzes the original

concrete program and does not rely on abstractions.

Probabilistic abstract interpretation. Probabilistic

abstract interpretation is used to reason about programs

with probabilistic semantics, for example to place upper

bounds on the probability of a particular path (Monni-

aux, 2000) or construct Monte-Carlo methods (Monni-

aux, 2001); this line of work does not explore the connec-

tions between abstractions and probabilistic programs,

nor does it model concrete program marginals. However,

our work does not reason about unbounded loops. The

framework of Cousot and Monerau (2012) is a highly

general framework for reasoning about programs using

probabilistic abstract interpretation; however, they do not

consider the abstraction itself to be a statistical model.

Probabilistic programming systems. Many systems

have been developed within the AI and programming

languages communities that tackle the problem of prob-

abilistic program inference, but few utilize abstractions.

Systems such as Church (Goodman et al., 2008), Angli-

can (Wood et al., 2014), Stan (Carpenter et al., 2016),

BLOG (Milch et al., 2005), and others directly ana-

lyze the concrete program. Weighted model counting

and knowledge compilation have been used to perform

probabilistic program inference (Fierens et al., 2013);

they also do not leverage program abstractions. Sev-

eral probabilistic inference approaches capture distribu-

tions in continuous domains by using Boolean predi-

cates, either as an approximation (Michels et al., 2016)

or as an exact representation (Belle et al., 2015a). Fi-

nally, program abstraction with the purpose of inference

is an instance of approximate lifted inference (Kersting,

2012): the abstract domain groups together sets of con-

crete states, with the aim of reasoning at the higher level.

6 CONCLUSION

Probabilistic program abstractions are currently unex-

plored territory for aiding in the analysis of programs,

despite the popularity of probabilistic programming. We

provided a formal framework, derived useful properties,

and described probabilistic predicate abstractions tech-

niques. Much theoretical and practical work remains to

be done in exploring alternative characterizations, show-

ing relationships between concrete programs and their

abstractions, and building practical probabilistic abstrac-

tion tools. We hope our framework provides the founda-

tional theory to enable these advances in the future.

Acknowledgements

This work is partially supported by NSF grants #CCF-

1527923, #IIS-1657613, and #IIS-1633857, and by

DARPA grant #N66001-17-2-4032. S.H. is supported by

a National Physical Sciences Consortium Fellowship.

References

T. Ball and S. K. Rajamani. Bebop: A symbolic model

checker for boolean programs. In SPIN Model Check-

ing and Software Verification, pages 113–130, 2000.

T. Ball and S. K. Rajamani. The SLAM project: Debug-

ging system software via static analysis. In Proc. of

POPL, pages 1–3, 2002.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.

Automatic predicate abstraction of c programs. In

Proc. of PLDI, pages 203–213, 2001.

V. Belle, A. Passerini, and G. Van den Broeck. Prob-

abilistic inference in hybrid domains by weighted

model integration. In Proc. of IJCAI, pages 2770–

2776, 2015a.

V. Belle, G. Van den Broeck, and A. Passerini. Hashing-

based approximate probabilistic inference in hybrid

domains. In Proc. of UAI, pages 141–150, 2015b.

B. Carpenter, A. Gelman, M. Hoffman, D. Lee,

B. Goodrich, M. Betancourt, M. A. Brubaker, P. Li,

and A. Riddell. Stan: A probabilistic programming

language. J. Statistical Software, VV(Ii), 2016.

S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scal-

able approximate model counter. In Proc. of CP, pages

200–216, 2013.

M. Chavira and A. Darwiche. On probabilistic inference

by weighted model counting. J. Artificial Intelligence,

172(6-7):772–799, Apr. 2008.

P. Cousot and R. Cousot. Abstract interpretation: A uni-

fied lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proc. of

POPL, pages 238–252, 1977.

P. Cousot and M. Monerau. Probabilistic abstract inter-

pretation. In Proc. of ESOP, pages 169–193, 2012.

A. Darwiche and P. Marquis. A Knowledge Compilation

Map. Proc. of IJCAI, 17:175–182, 2001.

L. De Moura and N. Bjørner. Z3: An efficient smt solver.

In Proc. of TACAS/ETAPS, pages 337–340, Berlin,

Heidelberg, 2008.

E. W. Dijkstra. A Discipline of Programming. Prentice-

Hall, Englewood Cliffs, New Jersey, 1976.

A. Donaldson, A. Kaiser, D. Kroening, and T. Wahl.

Symmetry-aware predicate abstraction for shared-

variable concurrent programs. In Proc. of CAV, vol-

ume 6806 of LNCS, pages 356–371. Springer, 2011.

D. Fierens, G. Van den Broeck, J. Renkens, D. Shte-

rionov, B. Gutmann, I. Thon, G. Janssens, and

L. De Raedt. Inference and learning in probabilis-

tic logic programs using weighted boolean formulas.

J. Theory and Practice of Logic Programming, 15(3):

358 – 401, 2013.

T. Gehr, S. Misailovic, and M. Vechev. Psi: Exact sym-

bolic inference for probabilistic programs. Proc. of

ESOP/ETAPS, 9779:62–83, 2016.

C. P. Gomes, A. Sabharwal, and B. Selman. Model

counting. In A. Biere, M. Heule, H. van Maaren, and

T. Walsh, editors, Handbook of Satisfiability, volume

185 of Frontiers in Artificial Intelligence and Applica-

tions, pages 633–654. IOS Press, 2009.

N. D. Goodman, V. K. Mansinghka, D. M. Roy,

K. Bonawitz, and J. B. Tenenbaum. Church: A lan-

guage for generative models. In Proc. of UAI, pages

220–229, 2008.

S. Graf and H. Saïdi. Construction of abstract state

graphs with PVS. In Proc. of CAV, volume 1254,

pages 72–83. Springer-Verlag, June 1997.

R. Grigore and H. Yang. Abstraction Refinement Guided

by a Learnt Probabilistic Model. Proc. of POPL, pages

485–498, 2016.

K. Kersting. Lifted probabilistic inference. In Proc. of

ECAI, pages 33–38, 2012.

S. Michels, A. Hommersom, and P. J. F. Lucas. Approx-

imate probabilistic inference with bounded error for

hybrid probabilistic logic programming. In Proc. of

IJCAI, pages 3616–3622, 2016.

B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong,

and A. Kolobov. Blog: Probabilistic models with un-

known objects. In Proc. of IJCAI, pages 1352–1359,

2005.

D. Monniaux. Abstract interpretation of probabilistic se-

mantics. In International Symposium on Static Analy-

sis, pages 322–339, 2000.

D. Monniaux. An abstract monte-carlo method for the

analysis of probabilistic programs. SIGPLAN Not., 36

(3):93–101, Jan. 2001.

L. G. Valiant. The complexity of computing the per-

manent. J. Theoretical Computer Science, 8:189–201,

1979.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new

approach to probabilistic programming inference. In

Proc. of AISTATS, pages 1024–1032, 2014.

X. Zhang, X. Si, and M. Naik. Combining the logical and

the probabilistic in program analysis. In Proc. ACM

SIGPLAN International Workshop on Machine Learn-

ing and Programming Languages, pages 27–34, 2017.

S. Zhao, S. Chaturapruek, A. Sabharwal, and S. Ermon.

Closing the gap between short and long xors for model

counting. In Proc. of AAAI, pages 3322–3329, 2016.

